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Summary 
 

Wallis (1936) studied vacancies in the U. S. Supreme Court over a 96-year period (1837-1932), 

and found that the distribution of the number of vacancies per year could be characterized by a 

Poisson model. This note updates this classic study.  

 

 

INTRODUCTION 

 

One way to motivate students’ interest in probability theory is to illustrate its applicability in 

novel and unexpected contexts. In this regard, the Poisson distribution is a guaranteed winner, 

since there are so many strange and wonderful real world examples that can be used for 

classroom instruction. Indeed, ever since Bortkiewicz (1898) (c.f. Keynes 1971) published his 

classic analysis of deaths-by-horse-kick data, statisticians have been coming up with ever more 

intriguing applications over a wide range of natural and social phenomena. One of the most 

interesting of these is Wallis’s famous application of the Poisson to describe the occurrence of 

vacancies in the U. S. Supreme Court (Wallis 1936). 

 

These vacancies have occurred because of death or retirement of Supreme Court justices. 

Historically, the proportions of vacancies due to death and vacancies due to retirement have been 

roughly equal in number. (This is nicely illustrated by the two most recent vacancies: Chief 

Justice William Rehnquist died in 2005, while Justice Sandra Day O’Connor retired in 2006 due 

to personal, family reasons.) A third possible cause of vacancy, impeachment of a sitting justice, 

has never occurred. 

 

Studying vacancies from 1837 to 1932, Wallis found that a Poisson process with parameter  = 

0.5 vacancies/year gave a remarkably good fit to the distribution of the number of vacancies per 



year over the sample period. Wallis, by the way, studied vacancies from 1837 onwards because 

the size of the Court varied since its inception in 1789, but has remained stable at 9 members 

since 1837 (with a minor exception in 1863-67, which he chose to ignore). I have used this 

numerical example many times in teaching the Poisson distribution to students of introductory 

statistics, and it has never failed to intrigue them. In fact, for both students and teacher it is often 

one of the most enjoyable classes of the entire semester. 

 

There are two problems, however, that mar somewhat the pedagogic utility of this example. The 

first and most obvious problem, of course, is that Wallis’s paper is now over 70 years old, so as 

time goes by students cannot fail to wonder if the good fit was a particularity of this specific 

sample period. (The teacher wonders too.) In other words, what happened after 1932? 

 

The second problem is that, to compute the expected frequencies with a Poisson model, we need 

a value for the parameter , which in most applications is estimated from the sample itself, since 

usually no other information is available. Wallis obtained his value for  by comparing the total 

number of vacancies over his sample period (48) with the total number of years in the sample 

(96), yielding an average of 0.5 vacancies/year. The problem here is that the parameter used to 

compute the expected frequencies under the null hypothesis (i.e., that the distribution is Poisson) 

is estimated from the same data that are used to test the null hypothesis. For some students, this 

might raise a suspicion that the data are being “over-fitted” and that the test is somehow biased 

in favour of acceptance. 

 

In this note I will try to deal with these problems by updating Wallis’s data and validating his 

results by checking them against an independent sample. As it turns out, once this is done, this 

classic case study becomes an even more powerful classroom example. 

 

 

LITERATURE REVIEW 

 

This is not the first time this case has been updated. Callen and Leidecker (1971) extended 

Wallis’s sample to 1970, and found that the Poisson continued to provide a good fit for the 

enlarged, 134-year sample. Kinney (1973) extended the sample both forwards (to 1972) and 

backwards (to 1790), and found that for the full period (1790-1972) and for the restricted period 

(1837-1972) the distributions were essentially the same, which suggests that Wallis’s misgivings 

about the pre-1837 years were perhaps unwarranted. Morrison (1977) retained 1837 as the 

starting year, but extended the sample to 1975, while Ulmer (1982) started with 1790, and 

extended the sample to 1980. In all of these studies, the authors fitted a Poisson model directly to 

the enlarged samples. The results are all qualitatively similar to Wallis’s original finding (the 

distribution is Poisson), and the numerical results are similar as well.  

 

In this study I complement Wallis’s dataset by counting the number of vacancies per year since 

1933 through the last available full year, 2007. I base my counts on the table entitled “Members 

of the Supreme Court of the United States” (United States Supreme Court 2008). This new, post-

1932 sample is then used to validate Wallis’s results by comparing the observed frequencies with 

expected frequencies under a Poisson distribution with Wallis’s original parameter estimate. 

 



DATA AND RESULTS 

 

Table 1 reports Wallis’s data for 1837-1932 and the corresponding data for 1933-2007, plus the 

expected frequencies under the hypothesis that the probability of each number of vacancies per 

year follows a Poisson distribution with parameter  = 0.5: 
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Table 1. U.S. Supreme Court vacancies, 1837-1932 and 1933-2007. 

—————————————————————————————————— 

Number of years in which x vacancies occurred 

—————————————————————— 

1837-1932   1933-2007            

Number of   —————————— —————————— 

vacancies (x) Probability Observed Expected Observed Expected 

—————————————————————————————————— 

 0  0.6065  59  58.227  47  45.490 

 1  0.3033  27  29.113  21  22.745 

 2  0.0758   9    7.278   7    5.686 

 3  0.0126   1    1.213   0    0.948 

> 3  0.0018   0    0.168   0    0.131 

 

Totals  1.0000  96  96.000  75  75.000 

 

Chi-square goodness of fit tests: 
 

1837-1932  2
1 = 0.371  5% critical value = 3.841 

1933-2007  2
2 = 0.192  5% critical value = 5.991 

—————————————————————————————————— 

 

 

 

The table also reports the results for the chi-square goodness of fit tests, which were computed 

by combining the 2, 3 and “over 3” categories following the well-known rule that all expected 

frequencies under the null hypothesis should equal 5 or more. In a conventional chi-square test 

the degrees of freedom equals the number of categories minus one, but in the 1837-1932 sample 

an additional degree of freedom is lost because  was estimated from the same sample. The test 

for the 1933-2007 sample has two degrees of freedom since the parameter was estimated 

independently. In both cases the hypothesis that the underlying distribution is Poisson with 

parameter  = 0.5 is not rejected. 

 

 



CONCLUSIONS 

 

The remarkably close fit in Wallis’s original data is of course what gave rise to this whole 

exercise. What is even more remarkable, however, is the close fit for the second set of data, since 

the parameter for the Poisson probabilities was not estimated from the sample data—“the 

observations whose conformity is to be tested,” as Wallis puts it (Wallis 1936, p. 379). Instead, 

the expected frequencies for the second sample period were computed using the parameter that 

was estimated from the first period. This is a much stronger test. 

 

Wallis’s classic analysis of Supreme Court vacancies provides an excellent classroom 

application of a Poisson process. My hope, in updating this example and showing that it still 

applies, is that it will continue to amaze and instruct future generations of students for many 

years to come. 
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